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Introduction 

Optical communication is a key method of transmitting 
information in the modern age. It involves signal transmission 
using light waves through optical fi bers or free space. These 
light signals carry information in the form of digital data, 
images, and video, over vast distances with minimal signal 
loss [1].

Electro-absorption Modulation Laser (EML) is a type 
of semiconductor laser used in optical communication 
systems [2]. It combines the functions of a laser diode and 
an electroabsorption modulator in a single device. EMLs are 
commonly employed in high-speed optical communication 
applications, such as fi ber-optic communication networks, 
due to their ability to provide both modulation and light 
emission functions. For data transmission over long distances, 
EML chips can offer many performance advantages over other 
alternative technologies such as Directly Modulated Laser 
(DML) and silicon photonics (SiPh) [3,4].

In today’s fi ber optic applications, laser chips and optical 
modules are often required to meet a broad scope of stringent 
criteria as illustrated in Figure 1. Firstly, high performance and 
high reliability are essential. Secondly, component suppliers 
need to have the capability for high-volume manufacturing 
and low-cost solutions. Thirdly, the source lasers need to 
meet the transmission requirements of the 400G/800G/1.6T 
Artifi cial Intelligence (AI) applications. The fi nal key metric is 
compliance with Environmental, Social, and Governance (ESG) 
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Figure 1: Key metrics of modern fi ber optic products. EML chip is the technology 
enabler to meet all criteria in the applications of 400G/800G/1.6T AI. 
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to reduce carbon emissions and address the imminent crisis of 
climate change.

High performance & high reliability

To enable 800G AI transmission, semiconductor lasers 
are required to meet high-performance aspects, including 
low threshold current, high power, and high Extinction Ratio 
(ER). The threshold current is the level of bias current above 
which lasing occurs due to stimulated emission. The lower the 
threshold current, the higher the energy effi ciency. Optical 
power is the key factor determining the transmission distance. 
The greater the power coupled into the fi ber, the longer the 
transmission distance. ER is critical for the quality of optical 
communication, as it is based on the difference between the 
ON state and the OFF state. The greater the ER ratio is, the 
wider the separation, and thus the better quality of optical 
transmission [5].

Modern fi ber optic links also demand high reliability from 
optical transceiver modules. To meet the overall reliability 
requirement of optical modules, each component needs to be 
robust. For example, the “Parts Count” method in Telcordia 
SR-332 calculates the failure rate of the optical transceiver unit 
as the sum of all device types, weighted by the quantity of each 
device [6]. In the case of an 800G optical transceiver, each laser 
chip would likely need to be ≤ 15 FITs to limit the total failure 
rate to ≤ 200 FITs at the module level.

N Ltotal i i0
n
i                     (1)

Where total is the total failure rate of the optical transceiver 
for all n device types, Ni is the number of each component, and 
Li is the failure rate of each device type.

High volume manufacturing & low cost

The global landscape of semiconductor chip manufacturing 
has undergone a major shift in the last few decades [7]. 
The United States has moved chip manufacturing offshore, 
particularly to Asia, since the mid-1990s. Despite recent 
efforts by the US to bring chip production back to its home soil 
through initiatives like the CHIPs and Science Act bill, tangible 
progress may not be evident until a longer time horizon [8,9]. 
European countries such as the United Kingdom, Germany, and 
France have experienced decreased market share for decades. 
Japan is also losing its chip manufacturing prowess. On the 
other hand, Taiwan and Korea have emerged as manufacturing 
leaders, while China and Southeast Asia are catching up with 
government subsidies.

Artifi cial intelligence & 400G/800G/1.6T

AI plays an important role in manufacturing, electric 
vehicles, robotics, healthcare, and other sectors. Recently, AI 
applications have been accelerated by companies such as Nvidia 
and OpenAI. The launch of ChatGPT software in November 
2022 has resulted in widespread user adoption and contributed 
to AI business growth [10]. On the AI hardware side, Nvidia 
recently released the DGX H200 supercomputer, which has 

reshaped industry demand, leading to signifi cant growth in 
orders for 800G optical transceivers since the second half of 
2023 [11]. The Magnifi cent Seven big tech companies, including 
Microsoft, Alphabet, Meta, and Amazon, are integrating AI 
servers into their operations [12]. In the realm of 800G & 1.6T 
AI, 106Gbaud high-speed EML serves as the key building block 
for 212 Gbps four-level pulse amplitude modulation PAM4 
(106Gbaud) transmission [13,14].

Environmental, social and governance 

The 2023 United Nations Climate Change Conference (COP28, 
Dubai) once again highlighted the urgent need to combat global 
temperature rise caused by fossil fuels [15,16]. Carbon emission 
reduction requires a concerted effort between governments 
and across all industry sectors. ESG, or Environmental, Social, 
and Governance practices, is an environmentally sustainable 
practice undertaken by companies in order to mitigate their 
negative environmental impact while staying profi table. 

Energy effi ciency, to comply with environmental 
regulations and reduce carbon emissions, has become an 
increasingly important aspect of optoelectronic products [17]. 
In 800G networks, the power consumption can be drastically 
reduced by incorporation of 200Gbps EML [18-20], as the use 
of the 200G/lane optics can reduce the number of lasers by half 
compared to 100Gbps EML [13]. 

In this paper, we report high-power 212Gbps PAM4 
(106GBaud) EMLs for 800G LR4 and AI optical transceivers. Our 
212G EMLs show high power, high bandwidth, high ER, and 
low threshold current that can make 800G optics cost-effective 
and environmentally friendly. The 212G EML also demonstrates 
extremely high reliability at the device level, resulting in a low 
overall failure rate prediction at the transceiver module level. 

Materials and methods

Figure 2 shows the 3-D schematic of a 212Gbps EML device 
structure with an LWDM wavelength scheme to support 800G 
LR4. The front section of the EML device consisted of the 
Electro-Absorption Modulator (EAM) for RF modulation, while 
the rear section was comprised of the distributed feedback laser 
diode (DFB-LD) for DC bias [13]. The DFB-LD structure was 
optimally designed to achieve high output power and single-
mode DFB lasing. The four LWDM lasers were fabricated in 
the same process except that the grating angle was adjusted to 
hit each LWDM target. The LD and EAM were joined by using 
Metal-Organic Chemical Vapor Deposition (MOCVD) Butt-Joint 
(BJ) technology [21]. Ti/Pt/Au metallization was deposited 

Figure 2: 3-D schematic device structure of 212Gbps LWDM EML where the front 
EAM pad is for RF modulation, and the rear DFB laser is for DC bias. 
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to form the p-contact to achieve low contact resistance and 
robust reliability [22]. 

To minimize optical refl ection, the front facet of EML was 
coated with ultra-low Anti-Refl ective coating (AR) using Ion 
Beam Sputtering (IBS). The LD section was biased with a DC 
current ranging from 0 to 150mA. With a constant LD bias, the 
EAM section was tested with a reverse voltage ranging from 
0 to -3V. The Extinction Ratio (ER) was extracted based on 
the plot of fi ber-coupled power versus EAM voltage, with the 
peak-to-peak voltage swing between the ON and OFF states 
being 1V.

The optical spectrum and DFB wavelength of the EML were 
measured using an Optical Spectrum Analyzer (OSA), a precision 
instrument designed to display the intensity distribution of an 
EML over a specifi ed wavelength span (1285-1320nm). The 
bandwidth was determined from the Optical-Electrical (O-E) 
frequency response curve measured by an Anritsu Network 
Analyzer. The 3dB bandwidth was determined by locating the 
cutoff frequency at -3dB on the response curve.

Reliability aging data was measured on the Chip-on-
Submount (CoS) loaded on the carrier. The chip was electrically 
connected to the submount using a wirebond. The aging 
condition was set at a stress current of 85 mA at a case 
temperature of 85 °C.

Results

Figure 3 shows the Optical Modulation Amplitude (OMA) 
power specifi cation of different 400G & 800G AI optical 
transceivers where DR4, FR4, and LR4 denote the transmission 
modes of 500m, 2km, and 10km according to IEEE802.3 
specifi cations [14,23]. The specifi cation of the power at the chip 
level is based on the correlation between chip and transceiver 
levels, considering coupling effi ciency and optical losses in 
the transceiver. The power requirement of the source laser 
increases with increasing transmission distance. The power 
specifi cation is the most stringent for 800G LR4. 

Figure 4 shows the light versus current (LI) curves of 
212Gbps EML devices of LWDM channels (L0, L1, L2, and L3). 
All four channels showed low threshold current (~15 mA) and 
high power (> 30 mW at 120 mA). The LI also showed good 
linearity with a small rollover. To quantify the device’s energy 
effi ciency, we measured the wall-plug effi ciency in terms 
of thermal dissipation [24,25]. The wall-plug effi ciency was 
defi ned as the ratio of the total optical output power to the 
input electrical power, representing the energy conversion 
effi ciency of the laser chip. At a bias current of 60mA, the 
power was 15mW and the forward voltage was about 1.3V. The 
wall-plug effi ciency was estimated to be approximately 22%, 
suggesting a high energy effi ciency for EML. The typical wall-
plug effi ciency of DML is in the range of 13% - 18% [17].

Figure 5 shows the optical power curves of the 212Gbps 
EML LWDM devices with EAM voltage varying from 0 to -2.5V 
at 53 °C. The LD bias was fi xed at 50mA. The power change 
with the EAM voltage was caused by light absorption from the 

EAM section. Light absorption from the modulator increased 
at higher reverse voltage, resulting in lower power output. The 
ER was proportional to the slope shown in the box during the 
voltage swing. For a peak-to-peak swing of 1.0V (Vpp=1.0V) at 
an EAM voltage of -1.0V, the ER value can be determined by the 
ON and OFF states shown in the dashed lined box, where VON=-
0.5V and VOFF=-1.5V, respectively.

Figure 6 shows the typical optical spectra of 212Gbps PAM4 
LWDM EMLs. Each EML channel exhibited excellent single-
mode DFB performance, achieving a side-mode-suppression-
ratio (SMSR) of over 50dB. Figure 7 displays the electrical-
optical frequency response plot of 212Gbps LWDM EML devices, 

Figure 3: The transmitter power specifi cations of 400G DR4/FR4/LR4 & 800G FR4/
LR4. The EML chip power versus transceiver OMA power is shown.

Figure 4: LI curves of the 212Gbps LWDM EML devices at 53 0C. The output power 
was measured with no voltage bias to the EAM section (VEA=0V). 

Figure 5: Optical power curves of the 212Gbps LWDM EML devices as a function of 
the EAM reverse voltage where the LD section was biased at 53 0C, 50mA. The ER 
can be extracted from the EA absorption curve. The voltage swings between the ON 
and OFF states are indicated.
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with the 3dB bandwidth reaching about 65 GHz, exceeding the 
specifi cation of 60 GHz.

Table 1 presents the extinction ratio (ER) and transmitter 
dispersion eye closure quaternary (TDECQ) values of the 
212Gbps PAM4 EMLs in the 800G LR4 optical transceivers. The 
212G EML can meet both TDECQ and ER targets for 800G FR4 
optical transceivers. The typical target for TDECQ is ≤ 3.9dB 
[26,27]. For 1.6T and beyond, ultra-high speed (> 212Gbps 
PAM4) lasers would be necessary to maintain the quality of 
modulated optical signals, and achieving such ultra-high 
speeds with EMLs would pose signifi cant challenges in terms 
of bandwidth and reliability.

Figure 8 shows the long-term reliability aging plot of 
212Gbps LWDM EML chips, where the aging condition was set 
at a stress current of 85mA at 85 °C. Both threshold current and 
optical power showed little change after 3000 hours of aging. 
Since no failures occurred, we projected the device lifetimes 
using a sublinear fi t on the aging curves [28]. Using the end-
of-life criterion of a 20% change in power, the mean-time-
to-failure (MTTF) of the 212Gbps EML devices was estimated 
to be approximately 2748 years at 53 °C operating condition. 
This represents a signifi cant reliability margin for the 20-year 

guaranteed life per Telcordia standards. The wear-out failure 
rate was projected to be approximately 3 FITs. This ultralow 
FIT rate at the chip level ensures a high confi dence level of 
reliability at the transceiver module level. According to the 
“Parts Count” method in Telcordia SR-332, the FIT rate of the 
800G transceiver can still be maintained at < 150 FITs (spec. < 
200 FITs) even under worst-case estimation, resulting from 
the sum of 4 EML chips and over 40 other active and passive 
components.

Conclusion

We have manufactured high-speed 212Gbps PAM4 
(106GBaud) LWDM EMLs for 800G LR4 optical transmission, 
achieving an extinction ratio of ≥4.5dB and a TDECQ of ≤ 2.0dB. 
The ultra-low failure rate at the EML device level (≤ 3 FITs) 
ensures a low failure rate for the overall 800G transceiver 
module. The high-speed, high-power 212Gbps LWDM EMLs 
meet the stringent criteria of modern 800G LR4 connectivity, 
including (1) high performance and high reliability, (2) low 
cost, (3) high-speed AI computing, and (4) environmental and 
energy effi ciency.
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